probability = no of favourable outcome/total outcome
講左點計total outcome先
呢隻係combination with replacement
有個例子係當你有 3 個波要放落 3 個格,每個格可以放多過一個波 ,問有幾多種排法
呢個時候你可以當係有3個波同3-1 = 2條分隔線排次序
OOO||
OO|O|
OO||O
O|OO|
O|O|O
O||OO
|OOO|
|OO|O
|O|OO
||OOO
10種排法
其實如果全部都理order o既話本身有5!=120咁多種排法,但係你會發現到本身5種排法入面果3粒波之間o既order係無用的,呢到每個排法整多左3!個combination出黎,另外果兩條分隔線個order都係唔使理,呢到每個排法又多左2!個combination
所以total outcome=5!/(2!x3!)=10,即係5C3
或者3(個波)+(3-1)(條分隔線) C 3(波既數量)
當波數係k,格數係n
total outcome就係(n+k-1)Cn <----formula
你呢到有6個波同4個格,即係有9C6個outcome=84
然後計favourable outcome
有邊個係favourable outcome?
每個格最少有1個波,所以有4個波o既位置係fix左,然後剩番兩個亂排出黎果o的結果就係favourable outcome
呢個時候你可以當係2個波4個格咁睇,(2+4-1)C2=5C2=10
大約係咁la