• 765閱讀
  • 4回復

MATHS(2) [復制鏈接]

上一主題 下一主題
離線炸炸帝
 
發帖
16290
好友元
0
閱讀權限
43434
貢獻值
3
只看樓主 倒序閱讀 使用道具 樓主   發表于: 2006-01-29
In the figure, TA is a tangent to the circle and TC cuts the circle at B such that TB=BC, TA=4

a)Prove that triangleACT and triangleBAT are similar
b)Hence find the length of CT

離線kylau
發帖
802
好友元
102317
閱讀權限
7361
貢獻值
0
只看該作者 1  發表于: 2006-01-29
a) AC is the diameter
angle ABC = 90 degrees (angle in semicircle)
TA is a tangent to the circle, so angle TAC = 90 degrees

angle ABC = angle TAC = 90 degrees
angle ATC and angle BTA (common angle)
So angle ACT = angle BAT (using angle sum of triangle, derive....)

So triangleACT and triangleBAT are similar

b) Straightforward, use corr. sides, similiar triangles in (a), ratio of te corresponding sides of the triangle is the same, get the result.
離線炸炸帝
發帖
16290
好友元
0
閱讀權限
43434
貢獻值
3
只看該作者 2  發表于: 2006-01-29
5 ming (b) part
離線kylau
發帖
802
好友元
102317
閱讀權限
7361
貢獻值
0
只看該作者 3  發表于: 2006-01-29
triangleACT and triangleBAT are similar

So AT/BT=CT/AT (corr. sides, similiar triangles)

remaining parts you do it yourself
離線炸炸帝
發帖
16290
好友元
0
閱讀權限
43434
貢獻值
3
只看該作者 4  發表于: 2006-01-29
thzx