• 854閱讀
  • 13回復

數學疑難 [復制鏈接]

上一主題 下一主題
離線鮮吊甬仔
 
發帖
6695
好友元
198316
閱讀權限
22360
貢獻值
1
只看樓主 倒序閱讀 使用道具 樓主   發表于: 2006-07-15
The prime ministers A,B,C,D,E,F and G of 7 countries will address at a summit meeting.
(a) Find the number of arrangements that can be made so that
(i) A will speak before C,
(ii) A will speak before C and C before E.
(b) In how many of those ways in (a) (ii) will C speak immediately after A?


離線kylau
發帖
802
好友元
102317
閱讀權限
7361
貢獻值
0
只看該作者 1  發表于: 2006-07-15
引用第0樓Skyline2006-07-15 16:44發表的“數學疑難”:
The prime ministers A,B,C,D,E,F and G of 7 countries will address at a summit meeting.
(a) Find the number of arrangements that can be made so that
(i) A will speak before C,
(ii) A will speak before C and C before E.
(b) In how many of those ways in (a) (ii) will C speak immediately after A?


A question on permutation

have u learnt sth like 5P2, 10C3, 4!  ??

e.g. try to list the following table and solve for a(i)

1 2 3 4 5 6 7
a                 5P0 X 6! = 720
  a               5P1 X 5! = 600
    a             5P2 X 4! = 480
      a           5P3 X 3! = 360
        a         5P4 X 2! = 240
          a       5P5 X 1! = 120 
            a     Impossible

So total favoritable outcomes = 2520

note that possible outcomes = 7!=5040

as by common sense, either A is in front of C, or behind C. And the theorical probability is 1/2, so the answer makes sense.

others u try to solve by urself first, if still donno, just ask.
離線鮮吊甬仔
發帖
6695
好友元
198316
閱讀權限
22360
貢獻值
1
只看該作者 2  發表于: 2006-07-15
明解了, thz
離線BBF
發帖
32231
好友元
12173
閱讀權限
32231
貢獻值
1
只看該作者 3  發表于: 2006-07-15
Total=7P7=5040

A講第nth可能=5040/7=720

1 2 3 4 5 6 7
a                              =>720*6/6 = 720     
   a                       =>720*5/6 = 600 (A講第2即C在六個可能中有5個可能講後)     
        a        =>720*4/6 = 480     
      a      =>720*3/6 = 360     
        a    =>720*2/6 = 240     
          a  =>720*1/6 = 120      
            a=>720*0/6 = 0    
即 720+600+480+360+240+120+0 = 2520 (out of 5040 possible choice) 

similar solution as kylau for reference
離線鮮吊甬仔
發帖
6695
好友元
198316
閱讀權限
22360
貢獻值
1
只看該作者 4  發表于: 2006-07-15
(a)(ii)
我咁計:
4! x 5 + 4! x 4 x 2 + 4! x 3 x 3 + 4! x 4 x 2 + 4! x 5 =840

仲有冇其他計法
離線BBF
發帖
32231
好友元
12173
閱讀權限
32231
貢獻值
1
只看該作者 5  發表于: 2006-07-15
引用第4樓Skyline2006-07-15 20:58發表的“”:
(a)(ii)
我咁計:
4! x 5 + 4! x 4 x 2 + 4! x 3 x 3 + 4! x 4 x 2 + 4! x 5 =840
仲有冇其他計法


Do you get the ans?
I just count the possible choice and the number is much less than your ans.

===================
Oh, I miss sth...so I just only count the small no.
I get the ans now, ...
Share with you, although not too good method
still fix a

1 2 3 4 5 6 7
a                                  5+4+3+2+1=15#
 a                       4+3+2+1=10
      a             3+2+1=6
      a         2+1=3
        a     1 (only one solution)
          a     0 (no solution)
            a 0 (no solution) 
#5 means put C at "2" and there will be 3,4,5,6,7 (5 choice) for E
4 means put C at "3" and there will be 4,5,6,7 (4 choice) for E
other are similar
the total is 35, with consider other speckers can speck in any order, 4P4
=> 35*4P4 = 840
[ 本文被ballballfull在2006-07-15 22:03重新編輯 ]
離線kylau
發帖
802
好友元
102317
閱讀權限
7361
貢獻值
0
只看該作者 6  發表于: 2006-07-15
ur method is ok

and this is the best method i can think of

i think skyline's idea is that
now instead of fixing A first, fix C

1 2 3 4 5 6 7
c                         impossible
 c                      1x5x4!
      c            2x4x4! 
      c          3x3x4!
        c        4x2x4! 
          c      5x1x4! 
            c    impossible

say for C is on the 2nd,
the 1 means there's a possible case for A to be in front of C
the 5 means there's 5 possible cases for E to be behind C
the 4! means the arrangement of the other 4 letters
離線鮮吊甬仔
發帖
6695
好友元
198316
閱讀權限
22360
貢獻值
1
只看該作者 7  發表于: 2006-07-15
引用第5樓ballballfull2006-07-15 21:28發表的“”:
Do you get the ans?
I just count the possible choice and the number is much less than your ans.
.......

=3=
離線kylau
發帖
802
好友元
102317
閱讀權限
7361
貢獻值
0
只看該作者 8  發表于: 2006-07-15
無聊一問:

ballballfull你係讀maths/stat major的?
離線BBF
發帖
32231
好友元
12173
閱讀權限
32231
貢獻值
1
只看該作者 9  發表于: 2006-07-16
engine subject

asl app. math
al p. math

math is fun

If I can study more, I think stat. is a good choice.
However, I forget most knowledge of AL math.
[ 本文被ballballfull在2006-07-16 23:11重新編輯 ]
離線lamho
發帖
17972
好友元
0
閱讀權限
17972
貢獻值
1
只看該作者 10  發表于: 2006-07-16
咁深既........
離線「隱」
發帖
6048
好友元
60599
閱讀權限
26887
貢獻值
3
只看該作者 11  發表于: 2006-07-17
完全唔知咩黎@@"
離線kylau
發帖
802
好友元
102317
閱讀權限
7361
貢獻值
0
只看該作者 12  發表于: 2006-07-17
引用第9樓ballballfull2006-07-16 21:12發表的“”:
engine subject
asl app. math
al p. math
.......


AL maths 我認為只有differentiation, integration 同Probability有用
其他唔記得都無咩所謂
離線BBF
發帖
32231
好友元
12173
閱讀權限
32231
貢獻值
1
只看該作者 13  發表于: 2006-07-17
matrix 個d
讀engineering subject 有用
cad/cam